BASIC

 CONVERTER CHART

One day, all computers will understand the same
language (and read each others’ disks and address the
screen in the same way and . . .). To tide you through
wntil this great day arrives, however, we set out to
beg, steal or even buy eleven of the most popular
home micros to produce this APC Basic Converter
Chart.

Whether you're trying to convert that amazing
Atari game to run on your Apple, have just spent the
past three hours wondering why your mew
Commodore 64 micro doesn’t seem to give the right
answer to a FRE statement or simply want to write
programs which can be easily converted to other
micros, the APC Basic Converter Chart is here to
help.

It isn’t possible, of course, to cover every micro nor
every command supported by each of the machines
included — much as we'd like to. Also, since different
micros have an annoying tendency to use the same
keyword to perform slightly — or totally — different
functions, converting from one machine to another
will require some rewiting beyond simply changing
the syntax. What this chart aims to do, however, is
provide you with an at-a-glance syntax comparison
wsing Microsoft Basic as the standard. The chart won't
convert programs for you, but it should save you the
trouble of wading through masses of manvals written
by authors who have apparently not yet heard about
alphabetical indexing.

Due to the limited amount of information we can
squeeze into each box, it hasn’t always been possible

to indicate the full power of every command or
statement. Most LIST statements, for example, allow
you to list the whole program, list a spedified line, list
all lines within a given range, list all lines up to a
specified line or list from a specified line. Fiddling
around with brackets in an attempt to represent each
of these possibilities would lead to a totally
incomprehensible entry. It should be assumed,
therefore, that we're dealing with the most common
vse of each statement here and that other uses may be
available.

Something to be aware of is that identical syntax
may have very different effects on different machines.
SYSTEM on a TRS-80 will transfer program control to
o machine language routine while in Microsoft Basic
closes files prior to returning to the operating
system.

You will notice that we haven't included anything
on sound and graphics; with most of today’s micros
offering both high-resolution graphics and fairly
sophisticated sound control, this area would require a
chart of its own. APC will be looking at sound and
colour in a later issue.

The abbreviations used in the chart are as
follows:

addr = address, exp = expression,

sub = subscript, stmt = statement,

var = variable,

Square bracket [] indicates optional code.

Ioc’]_

Australian Personal Computer Page 89

Novisy aln) $9-ar

From: Australian Personal Computer November 1983 Vol. 4 No. 11

Scanned by Bob Kitch February 2021 at 400 dpi ’
Composited in MicroSoft Publisher 2016

Size 600 x 820 mm
Those rotten manufacturers still insist on making machines that won't IS the same on every single machine featured here. Due to the SHARED INSTRUCTIONS ABBREVIATIONS USED IN THIS CHART:
talk to each other in the same language. Some enlightened people limited amount of information we can squeeze into each box, it
are having a go with MSX, but in the meantime and in response to hasn't always been possible to indicate the full power of every state- ABS (exp) addr = address
ustralnan overwhelming demand, here’s the 1986 APC Converter Chart. ment. It should be assumed, therefore, that we're dealing with the COS (exp) exp = expression
rsonal We've added seven new Basics, covering the latest machines, and most common uses of each statement, and that other uses may be END NB not available on QL parm(s) = parameter(s)
revised and updated the chart. It isn’t possible, of course, to cover available. FOR var=exp TO exp [STEP exp] stmt = statement
Com ter every micro nor every command supported by each of the machines Something to watch out for: identical syntax may have different LEN (string) NB Space must be present for Memotech var = variable
included. What this chart aims to do is to provide an at-a-glance effects on different machines. Watch out especially for SYSTEM LET var=EXP NB LET obligatory after THEN and ELSE on MicroBee Square brackets [] indicate optional code.
syntax comparison using Microsoft Basic as a reference point. The and RND. REM text
chart won't convert programs for you but it will save you the trouble You'll notice we haven't included anything on sound and graphics: SIN (exp)
of getting hold of piles of manuals — and even when you've got that's too complicated for a quick reference chart, but we've covered SQR (exp)
them it's often the beginning, not the end of your worries. the subject in a series of articles which will appear in APC for STOP
W A L L C H A RT To use the chart, first check that the keyword you want isn't in the a range of machines. TAN (exp)
box on the right. If it is, then you're lucky: it's one of the few that VAL (exp) NB not available on QL

ASC ATN AUTO CALL CHAIN | CHR$ CLEAR CLOSE CONT DATA DEF | DELETE | DIM EDIT EXP FRE GET GOSUB | GOTO IF/THEN/ELSE
STAN DARD Retuns ASCH Arctangent of Calls assembler Call 2 new Gives one-char CLEAR all [or Closes disk files continue program Lists data to be Define arithmetic Delete specified Allocates space Edt 3 program Raises to power Returs remaining Read a record from Branch to a Basic Branch 1o a If exp is true stmt
value of first expression. language sub- program & pass string with ASCIl selected] variables. — closes all files execution used in a READ string function. program lines. for amays, of expression. memory space. disk or tape file. subroutine. specified fine is executed. If not
MlcnosorT character of string. routine variables to it code of exp. if no specification. statement specifies max number. ELSE or following
betsiat valies line is executed.
ASC (string) ATN (exp) AUTO [lineno, val] CALL varf,var, CHAIN “filename’* CHRS (exp) CLEAR [exp,exp] CLOSE CONT DATA const DEF FNvar DELETE lineno DIM var{sub) EDIT fineno EXP(exp) FRE(exp) GET [#] lineno GOSUB fineno GOTO lineno If exp THEN
var...] [.const, . . .] [(var,var . . .)] [.fineno] [ovar (sub), . ..] [.record no] or [ELSE stmt]
=exp INPUT #fileno, var
[var. . .] for
MACHINE : o e

W | 7 —t o b - = R =
- ASC (sting) ATN (exp) USR (ddr CHRS (exp) CR CLOSE [#fieno, DATA const eursor e (EXPlow) | FEew) | GET Hioens, GOSUB fnena/ GOTO linena/ I exp THEN stmt
AT ARI . e e Lm‘-) i e [eonst ..] :)’ l"l' - - l:?nkl record var/exp vai/ep Note: no ELSE
ASC (string) ATN (exp) AUTO [fineno, val] CALL addr, CHRS (exp) CLEAR CLOSE #fleno NB not DATA const DEF Fivar DELETE fineno DIM var{sub) [cursor editing] EXP{exp) HIHEM-TOP INPUT #lineno, GOSUB lineno/ 60O finena/ If exp THEN stmt
BBC [var][.vr, ..] Note: CLOSE #0 to | available: [iconst ..] = [-ineno] [verisub) . .] Use PRINT record [var]fexp] [varllexp] [ELSE stmi]
close all files :-“ 6010 [record. .]
= ASC (string) ATN (exp) SYS addr CHRS (exp) CIR CLOSE #fieno CONT DATA const DEF Flvar DIM var{ sub) [cursor editing] EXP(exp) FRE(exp) GET #fileno, var GOSUB linena 60TO lineno IF exp THEN stmt
COMMODORE 64 & VIC 20 LR .. T
dummy vanable
ASC (string) ATN (exp) AUTO (lineno] CALL addr CHAIN filename CHRS (exp) CLEAR CLOSE [#] CONT DATA const DEF FNvar DELETE [fineno] DIM var{sub) EDIT fineno EXP(exp) FRE(exp) GET [#] filename 6OSUB linena 6OTO lineno If exp THEN stmt
' B M Pc B AS I c A {inc] et (eare] Eometon] ((mms=ss | o] vy - | n = Fon T
= dummy variable
ASC (string) ATN (exp) AUTO [lineno) USR (addr) CHRS (exp) CLEAR DISC CLOSE # CONT DATA const DEF Fivar DIM var{sub) EDIT fineno EXPlexp) Disc INPUT # GOSUB fineno 60TO fineno If exp THEN stmt
M E MOTECH MTx 5 l 2 i e ot (s} =exp Lvadsat) .. I o e

INKEY$ | INPUT | INT LEFT$ LIST LLIST LOAD LOG MID$ NAME | NEW NEXT ON ERROR | ON/GOSUB| ON/GOTO | OPEN ourt PEEK POKE PRINT

S"'AN D ARD Returs character Read data from Evaluates Retums specified List specified List specified Load a program Natural logarithm Gives specified no. Rename a fil. Delete curent End of Emor trap GOTO fneno spec- ;u:u fineno spec- Open disk file. :mww :‘& ::4 l'zu n:mnmuy :mwwﬁd byte :V:'.n :-:m:u dlut
typed at keyboard terminal exgeession for no. of characters program lines at program lines at file into memory. of expression. of characters to the program & data FOR/NEXT loop. subroutine. ified by evaluation by evaluation e o
Mlcnosorr or null if no largest integer starting at begin- terminal. printer. right of m:tmg from memory. of expression. of expression. port memory
h used contained. ning of string. position in 3 ——
: S{st NEXT var ON ERROR On exp GOSUB On exp GOTO OPEN mode [#] OUT port, byte PEEK(addr) POKE addrbyte [#
INKEYS INPUT [string:] INT (exp) LEFTS (string, ST [nenc, LUST [lineno, o L0G{exp) MIDS| string start NAME *enarme” W o0 s s e ool fieno] [exp]
b ol e v o [] Ll o S [.fineno . . .] [fineno . . .] [ep...]

T i i INT (exp) sting (start, UST [iness, | il e o 2 o , AP lineno/ Copivi] | L b i
AT A i length) mno] L ‘ s T b |
ATARI K N " 3o L % | ’ -
! LALE = L 1 = - : B) ‘ S
Get var [unlimited] INPUT [string;] INT (exp) LEFTS (string, UST (linens, LOAD “filename’” exp) MIDSstring, " NEW Note: under NEXT [var][.ver...] | ON ERROR stmt ON exp{ver] GOSUB .
INKEYS) length) lineno-lineno] L length]) cert. circum. may [OFF] lineno
ml‘;lm i e ! “*TAPE' to select common rather = . be_recovered [/fineno . . .] ot in BBC Basic
i o o = - l PEEK(addr) POKE addr,byte PRINT # filano
GET var INPUT [string:] INT (exp) LEFTS (string. LIST [inenc- OPEN 4,4:CMD4: LOAD [*filename”’) LO6(exp) MIDS(string, OPEN 1,8,15, NEW NEXT [var][.var . .] ON exp GOSUB ON exp 6OTO OPEN #exp, e
fineno-li i “RO: filename= lineno fineno fileno, mode,
o o g - lgirul 3,4:(:&3?1 [eﬂ-:]-: %ta)AD) filename” [disk only] [.Jineno . . .] [.fineno . . .] “filename” [record . .]
il o o OPEN filename OUT port, data PEEK(addr) POKE addr,byts PRINT [exp][;]
var S=INKEYS INPUT [prompt] INT (exp) LEFTS (string, LIST [1st line] UST [linenc, LOAD filename [,R] L0G{exp) MIDS(string, NAME filename NEW NEXT [var,var, . . .| ON ERROR GOTO ON [exp:COM: ON exp GOTO port, . :
IBM PC-BASIC A pal] o B T
- g
' 0UT por data PEEK(add) POKE addrbyte DISC] PRINT
var S=INKEYS INPUT [prompt) INT (exp) LEFTS (string. LIST (15t ling] ST [fineno, LOAD “filename” WN(exp) MIDS{string, DISC REN NEW NEXT var ON exp GOSUB ON exp GOTO DISC OPEN # -
MEMOTECH MTX 512 g S = e e eI e
record length
; o i ust

RANDOMIZE| READ RENUM | RESTORE | RESUME | RETURN | RIGHT$ | RND RUN SAVE SGN STRINGS | STR$ SYSTEM | TROFF TRON USR WAIT WHILE/END| WIDTH
STANDARD Reset random Read from data Change program Resets pointe to Retum from Retum from sub- Retums specified Generates ¢ Execute a program. Save a program Returns Retums a string of Converts 3 Close files for Trace off. Trace on. Calls an assembler Suspend program Bxecute Sets printer
number generator. statements into line numbers. facilitate re-reading ON ERROR sub- routine to_state- no. of characters random nu. sher. — either onto disk 1 it exp>0 specified length numeric expression retum to operating language sub- execution for statements in camiage/screen
specified vanables of DATA routine to stmt ment following last starting at end of or tape. 0 if exp=0 containing speci- o 2 string. system. routine which specified time. WHILE/WEND loop width,
M|CROS°FT statements. that caused emor. GOSUB executed. string. =1 if exp<0. fied ch retums one value. as long as exp is true
RANDOMIZE READ var RENUM [iineno, RESTORE RESUME RETURN RIGHTS (string, RND{exp] RUN [lineno] SAVE filename SGN(exp) STRINGS{length STRS{exp) SYSTEM TROFF TRON USR{parameter) WAIT port mark WHILE exp WEND WIDTH(val)
[exp] [ver..] val) length) string) [select]
: T F e T e | RND (-exp) READ var] ESTORE | RewAN [sting(statNB: | AND{exp) Hot | RUN [fineno] SGN(ep) | i 3 & |
ATADI ‘ ot P e | SR I =T~ T - 4 =T e | |
AT . RI - : S | !ﬂﬁma_:;f’ﬂ i R e ° gl irt) (0 €| i =t Y o
== —— RND (-time) READ var RENUMBER [stant RESTORE [linenc) RETURN RIGHTS(string. RND(exp) RUN SGN{exp) STRINGS{length, STRS(exp) *DISK NB: disk- TRACE OFF TRACE ON REPEAT stmt
[var...] fineno]|, interval] length) string) handiing done UNTIL exp Note:
BBC mm:; reverse logic
not true eq.
RND (-T) READ var RESTORE RETURN RIGHTS(string, RANDexp) RUN [fineno] SNG{exp) STRS{exp) USR(parameter) WAIT addr,
[var..] length) Note: exp is a expl,exp]
COMMODORE 64 & VIC 20 ke
RANDOMIZE READ var RENUM [new start no] | RESTORE [fineno] RESUME RETURN [lineno) RIGHTS RND(exp) RUN [inenc] SGN(exp) STRINGS STRS|exp) SYSTEM TROFF TRON USR(exp) WAIT port, WHILE exp WEND WIOTH exp
IB M Pc B ASI c A (exp) [var, ...] {-:}M no) ‘ (exp, length) (length, string) expl,exp]
= { | .
RAND (exp) READ var " RESTORE [inenc] RETURN RIGHTS RND(exp) RUN [lineno] SAVE “filsname” SGN(exp) STRS{exp) BYE USR(parameter) PAUSE (delay)
MEMOTECH MTX 512 i, b
[Fl ™| | e{i : -
2 I'_ e
RND (-exp) READ
TANDY |00 gk
——— - = =T e i = T - 1 — = e T e T o e N
\VA 'a “‘T ’-}w— ‘Wﬁr nEr=) X T ; - I i start, in f = . . e = | e =1 -:=-(w: = 3 .1 4 . el - e i i‘m - ::’:'— r;' l’!rf"-'.';:‘ " :' ﬁ >y 4
' I\ ‘9 0 ‘ R[5S o . et S, AL ‘ PO el g Ik o | A

